Synthesis of New 3-(4-Oxo-4*H*-chromen-3-yl)-3a,6a-dihydropyrrolo[3,4-*d*]isoxazole-4,6-dione Derivatives by 1,3-Dipolar Cycloaddition Reaction

Zhengfeng Xie, Fangming Liu*, Yonghai Hui, Caihong Liu and Yadong Sun

^aCollege of Chemistry and Chemical Engineering, xinjiang University, Urumqi, 830046, PR China ^bChemistry Department of Hangzhou Teachers Colleg, Hangzhou, 310012, PR China Received August 16, 2004

A series of new 3-(4-oxo-4*H*-chromen-3-yl)-3a,6a-dihydropyrrolo[3,4-d]isoxazole-4,6-dione have been synthesized by the reaction of *N*-arylmaleimides with nitrile oxide, prepared from α -chloro-4-oxo-4*H*-chromen-carbaldehyde oximes *in situ* through 1,3-dipolar cycloaddition reaction. The structures of all new compounds were confirmed by elemental analysis, ir, 1H nmr and mass spectral data.

J. Heterocyclic Chem., 42, 695 (2005).

Flavones and chromones are unique molecules because of the availability of their structural framework in a variety of natural products and biologically active molecules as well as for the challenges involved in the synthesis of these structures and related molecules [1]. Isoxazoles play an important role among a wide variety of nitrogen heterocycles that have been used after developing useful herbicides [2,3]. The isoxazole and isoxazoline ring system, which is typically prepared by the 1,3-dipolar cycloaddition of a nitrile oxide with alkynes and olefins [4-7], is particularly interesting since it is ready transformed into various biodynamic agents, including those with antithrombotic. PAF antagonist, and hypolipidemic properties [8]. In the present paper we describe the synthesis of a new series of $3-(4-\infty-4H-\text{chromen-}3-\text{yl})-3a,6a-\text{dihydropyrrolo}[3,4-d]$ isoxazole-4,6-dione derivatives by 1,3-dipolar cycloaddition reaction.

The formation of chromen oximes is facile and can be readily obtained by reacting 3-formylchromones with hydroxylamine hydrochloride and using sodium acetate in ethanol-water in good yield [9], without the formation of any side products or the rupture of the chromone unit

itself. Alpha haloaldoximes were prepared by alpha aldoximes with NBS in ether. In this paper, 4-oxo-4H-chromene-carbaldehyde oximes with (CH₃)₃COCl (tert-butyl hypochlorite) in isopropanol and 1,2-dichloroethane as solvent at ice-salt bath gave us the desired α -chloro-4-oxo-4H-chromenecarbaldehyde oximes. Nitrile oxide has been widely employed in 1,3-dipolar cycloadditions, and there are several methods for its preparation [10]. Aromatic nitrile oxides are usually generated in situ via dehydrohalogenation of the corresponding alpha haloal-doximes. We prepared 4-oxo-4H-chromenecarbaldehyde nitrile oxides by dehydrohalogenation of the corresponding α -chloro-4-oxo-4H-chromencarbaldehyde oximes with triethylamine in chloroform at room temperature.

Compounds **8**, **9** obtained by the reaction of N-arylmaleimides with 4-oxo-4*H*-chromene-carbaldehyde nitrile oxides. All these reactions gave the desired compounds in good yields. The spectral data agree with reported structures. The structure of **8**,**9** were confirmed based upon two mutually coupled doublet peaks with chemical shifts at δ 5.60-5.65 and 5.76-5.80 with coupling constant of J = 9.6-10.4 Hz, attributable to the C₄-H and C₅-H hydrogen

For compounds **2**, **4**, **6**, **8**: R = H For compounds **3**, **5**, **7**, **9**: R = CH₃ **Ar:** $\mathbf{a} = \text{Ph}^{-}$ $\mathbf{b} = p\text{-}\text{CIC}_{6}\text{H}_{4}^{-}$ $\mathbf{c} = o\text{-}\text{CH}_{3}\text{OC}_{6}\text{H}_{4}^{-}$ $\mathbf{d} = p\text{-}\text{BrC}_{6}\text{H}_{4}^{-}$ $\mathbf{e} = p\text{-}\text{CH}_{3}\text{C}_{6}\text{H}_{4}^{-}$ $\mathbf{f} = p\text{-}\text{NO}_{2}\text{C}_{6}\text{H}_{4}^{-}$ $\mathbf{g} = p\text{-}\text{CH}_{3}\text{OC}_{6}\text{H}_{4}^{-}$ atoms of the pyrrolo[3,4-d]isoxazole ring, based on a previous report by us for similar compounds [11]. The proton H-2 in the chromone ring was observed as a single peak resonating at δ 8.35-8.47. The proton H-8 in chromone ring of compounds **8** was observed as two double peaks at δ 8.28-8.32 with a coupling constant J = 8.0-8.4 Hz and J = 0.4-1.2 Hz. The proton H-8 in the chromone ring of compounds **9** was observed as double peaks at δ 8.06-8.09, with coupling constant J = 0.4-0.8 Hz. All of the prepared compounds were evaluated *in vitro* for their antifungal activity against variant streptococcus using CDCl₃ as solvent at 20 μ g/mL concentration. The results obtained revealed that compounds have no significant antifungal activity.

EXPERIMENTAL

Melting points were determined with a mettler FP-5 capillary melting point apparatus and are uncorrected. Elemental analyses were performed on a Perkin-Elmer 2400 elemental analyzer. The ir spectra were measured as potassium bromide pellet on a Bruker FT-IR spectrophotometer. The ¹H nmr spectra were recorded on a Varian Inova-400 spectrometer using TMS as an internal standard. Mass spectra were performed on a HP 5890.

General Procedure for the Synthesis of 3-Chromone-5-Aryl-3a,6a-dihydropyrrolo[3,4-*d*]isoxazole-4,6-dione Derivatives.

Triethylamine (18 drops) and 10 mL chloroform was added dropwise to the mixture of α -chloro-4-oxo-4H-chromenecarbaldehyde oximes (2.0 mmoles) and N-arylmaleimides (2.5 mmoles) in chloroform, after the mixture was stirred at room temperature for 5~6 h, water was added and the aqueous phase was extracted with chloroform (3×), the combined organic layer was washed with water, then was dried over Na₂SO₄ and the solvent was removed to give crude products. The crude products were recrystallized from chloroform or chloroform and petroleum ether mixture to give pure product.

3-(4-Oxo-4*H*-chromen-3-yl)-5-phenyl-3a,6a-dihydropyrrolo-[3,4-*d*]isoxazole-4,6-dione (**8a**).

This compound was obtained as brown yellow granular crystal, yield 51%; mp 239-241°; ms: m/z (%) 360 (M+, 24), 213 (45), 146 (100); ir (potassium bromide): 3064, 1711,1690,1657,1600, 1555, 1500, 1303; 1 H nmr (dimethyl sulfoxide-d₆): δ 5.64 (d, 1H, J = 10 Hz), 5.80 (d, 1H, J = 10 Hz), 7.12-7.73 (m, 8H), 8.28-8.30 (dd, 1H, J = 8.0 Hz, J = 1.2 Hz), 8.40 (s, 1H).

Anal. Calad. For $C_{20}H_{12}N_2O_5$: C, 66.67; H, 3.36; N, 7.77. Found: C, 66.59; H, 3.31; N, 7.80.

5-(4-Chlorophenyl)-3-(4-oxo-4H-chromen-3-yl)-3a,6a-dihydropyrrolo[3,4-d]isoxazole-4,6-dione (**8b**).

This compound was obtained as white needles crystal, yield 78%; mp 225-226°; ms: m/z (%) 396 ([M+2]+, 4), 394 (M+, 16), 213 (37), 146 (100); ir (potassium bromide): 3060, 1715, 1685, 1657, 1600, 1555, 1500, 1300; 1 H nmr (dimethyl sulfoxide-d₆): δ 5.63 (d, 1H, J = 10 Hz), 5.78 (d, 1H, J = 10 Hz), 7.13-7.76 (m, 7H), 8.28-8.30 (dd, 1H, J = 8.0 Hz, J = 1.2 Hz), 8.41 (s, 1H).

Anal. Calad. For $C_{20}H_{11}ClN_2O_5$: C, 60.85; H, 2.81; N, 7.10. Found: C, 60.96; H, 2.90; N, 7.18.

5-(2-Methoxyphenyl)-3-(4-oxo-4*H*-chromen-3-yl)-3a,6a-dihydropyrrolo[3,4-*d*]isoxazole-4,6-dione (**8c**).

This compound was obtained as white granular crystal, yield 48%; mp 234-237°; ms: m/z (%) 390 (M⁺, 38), 213 (45), 146 (100); ir (potassium bromide): 3030, 2979, 1720, 1685, 1657, 1596, 1553, 1495, 1233; 1 H nmr (dimethyl sulfoxide-d₆): δ 3.73 (s, 3H), 5.64 (d, 1H, J = 10.4 Hz), 5.81 (d, 1H, J = 10.4 Hz), 6.95-7.69 (m, 7H), 8.28-8.30 (dd, 1H, J = 8.0 Hz, J = 0.8 Hz), 8.41 (s, 1H).

Anal. Calad. For $C_{21}H_{14}N_2O_6$: C, 64.62; H, 3.62; N, 7.18. Found: C, 64.78; H, 3.53; N, 7.09.

5-(4-Bromophenyl)-3-(4-oxo-4H-chromen-3-yl)-3a, 6a-dihydropyrrolo[3,4-d]isoxazole-4,6-dione (**8d**).

This compound was obtained as white powdery crystal, yield 60%; mp 231-233°; ms: m/z (%) 440 ([M+2]+, 30), 438 (M+, 34), 213 (39), 146 (100); ir (potassium bromide): 3058, 1715, 1690, 1654, 1600, 1555, 1500, 1300; 1 H nmr (dimethyl sulfoxide-d₆): δ 5.63 (d, 1H, J = 10 Hz), 5.79 (d, 1H, J = 10 Hz), 7.12-7.75 (m, 7H), 8.28-8.30 (dd, 1H, J = 8.0 Hz, J = 1.2 Hz), 8.41 (s, 1H).

Anal. Calad. For $C_{20}H_{11}BrN_2O_5$: C, 54.69; H, 2.52; N, 6.38. Found: C, 54.77; H, 2.58; N, 6.43.

3-(4-Oxo-4*H*-chromen-3-yl)-5-*p*-tolyl-3a,6a-dihydropyrrolo-[3,4-*d*]isoxazole-4,6-dione (**8e**).

This compound was obtained as white crystal, yield 82%; mp 223-225°; ms: m/z (%) 374 (M+, 41), 213 (62), 146 (100); ir (potassium bromide): 3047, 2960, 1725, 1688, 1665, 1600, 1555, 1500, 1311; 1 H nmr (dimethyl sulfoxide-d₆): δ 2.46 (s, 3H), 5.62 (d, 1H, J = 10 Hz), 5.79 (d, 1H, J = 10 Hz), 7.03-7.67 (m, 7H), 8.29-8.31 (dd, 1H, J = 8.4 Hz, J = 0.4 Hz), 8.42 (s, 1H).

Anal. Calad. For $C_{21}H_{14}N_2O_5$: C, 67.38; H, 3.77; N, 7.48. Found: C, 67.26; H, 3.83; N, 7.39.

5-(4-Nitrophenyl)-3-(4-oxo-4*H*-chromen-3-yl)-3a,6a-dihydropyrrolo[3,4-*d*]isoxazole-4,6-dione (**8f**).

This compound was obtained as white pellet crystal, yield 46%; mp 185-186°; ms: m/z (%) 405 (M+, 52), 213 (66), 146 (100); ir (potassium bromide): 3062, 1720, 1692, 1660, 1596, 1555, 1500, 1349; 1 H nmr (dimethyl sulfoxide-d₆): δ 5.63 (d, 1H, J = 10.4 Hz), 5.78 (d, 1H, J = 10.4 Hz), 7.32-7.85 (m, 7H), 8.30-8.32 (dd, 1H, J = 8.4 Hz, J = 0.8 Hz), 8.42 (s, 1H).

Anal. Calad. For $C_{20}H_{11}N_3O_7$: C, 59.27; H, 2.74; N, 10.37. Found: C, 59.14; H, 2.82; N, 10.29.

5-(4-Methoxyphenyl)-3-(4-oxo-4*H*-chromen-3-yl)-3a,6a-dihydropyrrolo[3,4-*d*]isoxazole-4,6-dione (**8g**).

This compound was obtained as gray yellow powdery crystal, yield 67%; mp 246-248°; ms: m/z (%) 390 (M⁺, 32), 213 (47), 146 (100); ir (potassium bromide): 3030, 2985, 1720, 1685, 1657, 1593, 1555, 1495, 1300; 1 H nmr (dimethyl sulfoxide-d₆): δ 3.74 (s, 3H), 5.63 (d, 1H, J = 10.4 Hz), 5.77 (d, 1H, J = 10.4 Hz), 7.01-7.75 (m, 7H), 8.28-8.31 (dd, 1H, J = 8.4 Hz, J = 0.8 Hz), 8.41 (s, 1H).

Anal. Calad. For $C_{21}H_{14}N_2O_5$: C, 67.38; H, 3.77; N, 7.48. Found: C, 67.46; H, 3.82; N, 7.40.

3-(7-Methyl-4-oxo-4*H*-chromen-3-yl)-5-phenyl-3a,6a-dihydropyrrolo[3,4-*d*]isoxazole-4,6-dione (**9a**).

This compound was obtained as light yellow pellet crystal, yield 58%; mp 208-210°; ms: m/z (%) 374 (M⁺, 28), 227 (45),

160 (100); ir (potassium bromide): 3054, 2986, 1723, 1685, 1662, 1586, 1555, 1500, 1305; $^1\mathrm{H}$ nmr (dimethyl sulfoxide-d₆): δ 2.35 (s, 3H), 5.63 (d, 1H, J = 10 Hz), 5.78 (d, 1H, J = 10 Hz), 7.15-7.61 (m, 7H), 8.08 (d, 1H, J = 0.8 Hz), 8.39 (s, 1H).

Anal. Calad. For $C_{21}H_{14}N_2O_5$: C, 67.38; H, 3.77; N, 7.48. Found: C, 67.43; H, 3.85; N, 7.38.

5-(4-Chlorophenyl)-3-(7-methyl-4-oxo-4*H*-chromen-3-yl)-3a,6a-dihydropyrrolo[3,4-*d*]isoxazole-4,6-dione (**9b**).

This compound was obtained as light yellow powdery crystal, yield 70%; mp 210-211°; ms: m/z (%) 410 ([M+2]+, 5), 408 (M+, 19), 227 (45), 160 (100); ir (potassium bromide): 3050, 2990, 1720, 1685, 1662, 1585, 1555, 1500, 1305; 1 H nmr (dimethyl sulfoxide-d₆): δ 2.35 (s, 3H), 5.62 (d, 1H, J = 10 Hz), 5.81 (d, 1H, J = 10 Hz), 7.15-7.70 (m, 6H), 8.10 (d, 1H, J = 0.8 Hz), 8.40 (s, 1H).

Anal. Calad. For C₂₁H₁₃ClN₂O₅: C, 61.70; H, 3.21; N, 6.85. Found: C, 61.84; H, 3.12; N, 6.90.

5-(2-Methoxyphenyl)-3-(7-methyl-4-oxo-4H-chromen-3-yl)-3a,6a-dihydropyrrolo[3,4-<math>d]isoxazole-4,6-dione (**9c**).

This compound was obtained as light yellow crystal, yield 63%; mp 215-216°; ms: m/z (%) 404 (M⁺, 21), 227 (40), 160 (100); ir (potassium bromide): 3035, 2987, 1721, 1680, 1655, 1586, 1554, 1498, 1303; 1 H nmr (dimethyl sulfoxide-d₆): δ 2.35 (s, 3H), 3.75(s, 3H), 5.63 (d, 1H, J = 10 Hz), 5.80 (d, 1H, J = 10 Hz), 7.00-7.58 (m, 6H), 8.09 (d, 1H, J = 0.8 Hz), 8.39 (s, 1H).

Anal. Calad. For $C_{22}H_{16}N_2O_6$: C, 65.34; H, 3.99; N, 6.93. Found: C, 65.44; H, 4.02; N, 7.01.

5-(4-Bromophenyl)-3-(7-methyl-4-oxo-4*H*-chromen-3-yl)-3a,6a-dihydropyrrolo[3,4-*d*]isoxazole-4,6-dione (**9d**).

This compound was obtained as white powdery crystal, yield 54%; mp 236-238°; ms: m/z (%) 454 ([M+2]+, 25), 452 (M+, 29), 227 (38), 160 (100); ir (potassium bromide): 3040, 2987, 1721, 1680, 1655, 1586, 1554, 1498, 1303; 1 H nmr (dimethyl sulfoxide-d₆): δ 2.35 (s, 3H), 5.63 (d, 1H, J = 10 Hz), 5.83 (d, 1H, J = 10 Hz), 7.18-7.59 (m, 6H), 8.06 (d, 1H, J = 0.8 Hz), 8.39 (s, 1H).

Anal. Calad. For $C_{21}H_{13}BrN_2O_5$: C, 55.65; H, 2.89; N, 6.18. Found: C, 55.52; H, 2.80; N, 6.27.

3-(7-Methyl-4-oxo-4*H*-chromen-3-yl)-5-*p*-tolyl-3a,6a-dihydropyrrolo[3,4-*d*]isoxazole-4,6-dione (**9e**).

This compound was obtained as yellow needles crystal, yield 79%; mp 185-187°; ms: m/z (%) 388 (M⁺, 34), 227 (52), 160 (100); ir (potassium bromide): 3035, 2995, 1715, 1686, 1662, 1597, 1550, 1500, 1300; 1 H nmr (dimethyl sulfoxide-d₆): δ 2.36 (s, 3H), 2.40(s, 3H), 5.63 (d, 1H, J = 10 Hz), 5.80 (d, 1H, J = 10 Hz), 7.10-7.62 (m, 6H), 8.08 (d, 1H, J = 0.8 Hz), 8.40 (s, 1H).

Anal. Calad. For $C_{21}H_{16}N_2O_5$: C, 68.04; H, 4.15; N, 7.21. Found: C, 68.18; H, 4.21; N, 7.30.

3-(7-Methyl-4-oxo-4*H*-chromen-3-yl)-5-(4-nitrophenyl)-3a,6a-dihydropyrrolo[3,4-*d*]isoxazole-4,6-dione (**9f**).

This compound was obtained as light yellow granular crystal, yield 68%; mp 205-207°; ms: m/z (%) 419 (M⁺, 30), 227 (61), 160 (100); ir (potassium bromide): 3050, 2990, 1715, 1675, 1650, 1600, 1554, 1500, 1300; $^1\mathrm{H}$ nmr (dimethyl sulfoxide-d₆): δ 2.36 (s, 3H), 5.64 (d, 1H, J = 10 Hz), 5.83 (d, 1H, J = 10 Hz), 7.18-7.71 (m, 6H), 8.09 (d, 1H, J = 0.4 Hz), 8.41 (s, 1H).

Anal. Calad. For $C_{21}H_{13}N_3O_7$: C, 60.15; H, 3.12; N, 10.02. Found: C, 60.28; H, 3.15; N, 10.08.

5-(4-Methoxyphenyl)-3-(7-methyl-4-oxo-4*H*-chromen-3-yl)-3a,6a-dihydropyrrolo[3,4-*d*]isoxazole-4,6-dione (**9g**).

This compound was obtained as light yellow powder crystal, yield 51%; mp 225-226°; ms: m/z (%) 404 (M⁺, 31), 227 (49), 160 (100); ir (potassium bromide): 3035, 2985, 1718, 1676, 1649, 1600, 1550, 1498, 1301; $^1\mathrm{H}$ nmr (dimethyl sulfoxide-d₆): δ 2.35 (s, 3H), 3.76(s, 3H), 5.63 (d, 1H, J = 10 Hz), 5.80 (d, 1H, J = 10 Hz), 7.00-7.58 (m, 6H), 8.06 (d, 1H, J = 0.8 Hz), 8.40 (s, 1H). *Anal.* Calad. For $\mathrm{C}_{22}\mathrm{H}_{16}\mathrm{N}_2\mathrm{O}_6$: C, 65.34; H, 3.99; N, 6.93. Found: C, 65.46; H, 3.87; N, 6.99.

Acknowledgement.

We are extremely grateful to the National Natural Science Foundation of China for supporting this research (No 29702007, 20162004).

REFERENCES AND NOTES

- [1] A. K. Baruah, D. Prajapati and J. S. Sandhu, *Tetrahedron*, **44**, 1241 (1988).
- [2] R. E. Sammelson, R. B. Miller and M. J. Kurth, J. Org. Chem., 65, 2225 (2000).
- [3] C. B. Vicentini, M. Mazzanti, C. F. Morelli and M. Manfrini, *J. Heterocyclic Chem.* **37**. 175 (2000).
- [4] D. St. C. Black, R. F. Crozier and V. C. Davis, *Synthesis*, 205 (1975).
- [5] B. B. Shankar, D. Y. Yang, S. Girton and A. K. Ganguly, *Tetrahedron Lett.*, **39**, 2447 (1998).
- [6] N. M. Silva, J. L. M. Tributino, A. L. P. Miranda, E. J. Barreiro and C. A. M. Fraga, Eur. J. Med. Chem., 37, 163 (2002).
- [7] K. V. Gothelf and K. A. Jorgensen, Chem. Rev., 98, 863(1998).
 - [8] C. Quan and M. Kurth, J. Org. Chem., 69, 1470 (2004).
- [9] A. K. Baruah, D. Prajapati and J. S. Sandhu, Heterocycles. 27, 1127 (1988).
- [10] R. Alguacil, F. Farina and V. Martin, *Tetrahedron.* 52, 3457 (1996).
- [11] F. M. Liu, L. P. Deng, J. R. Wu, N. Wen and H. Y. Wang, *Chin. J. Org. Chem.* **24**, 521 (2004).